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Anyone familiar with neurological data understands that preprocessing them is far from 

straightforward. This document offers a comprehensive review of various techniques and methods for 

preprocessing and manipulating neurological MRI and fMRI datasets. We will explore a range of 

methods for preprocessing and analyzing these types of data, with an emphasis on the intuition and 

logic behind each method while also touching on some algorithmic details. It's worth noting that many 

of the technical specifics in each section can be bypassed, thanks to numerous software tools that 

automate the process. Nonetheless, I aim to provide some detail on the algorithms, particularly in the 

statistical analysis section, for a comprehensive understanding of these methods. 
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Note 1: I suggest you to install the FSL toolbox on your computer. This is one of the most used MRI/fMRI 

preprocessing tools (developed by the University of Oxford). It contains a very wide range of predefined options 

to automatically execute most data manipulation techniques that I am going to explain. Having this toolbox at 

hand and testing it on MRI/fMRI data as you read the following steps would help in understanding the concepts. 

Note 2: Also, note that there are also many tools that are specialized to deal with each of the following steps I 

will cover. For each of the steps you take during your projects, you will need to go through all available tools 

and decide on the tool with the most efficient algorithm for your. For example, SynthStrip is a tool solely 

designed to deal with the Brain Extraction stage. And, FastSurfer is a very fast and efficient deep learning-

based segmentation tool. 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation
https://surfer.nmr.mgh.harvard.edu/docs/synthstrip/
https://deep-mi.org/research/fastsurfer/#proof-of-concept
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Skull Stripping and Brain Extraction: Brain/non-Brain Segmentation 

       In preparation for registration and segmentation, brain extraction is essential. This process, often 

facilitated by tools like BET (Brain Extraction Tool), separates brain material from non-brain material. 

The objective is not to achieve absolute accuracy, but to remove the majority of non-brain material. 

This ensures that subsequent algorithms are not influenced or biased by irrelevant structures. 

       Brain extraction presents challenges, particularly near tissues like marrow or membranes. 

Especially, the presence of blood vessels can complicate the process. There are various methods for 

brain extraction. For example, BET, which is commonly used on MRI sequences and available in FSL, 

focuses on achieving a straightforward separation that removes the majority of non-brain materials 

outside the brain surface (e.g., scalp, marrow) and is robust to bias fields by using local intensity 

changes. However, BET does not address the intricate folds of the brain. For such detailed work, other 

tools are required. 

       In the following illustration, the image at the top is the input image, and the image at the bottom 

shows the extracted brain. 
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       The underlying mechanism of BET involves starting with a sphere and expanding it, particularly 

when the sphere extends beyond the brain's boundaries. This expansion aims to find the brain's edge 

and achieve a clean separation. The tool provides flexibility in its output, offering either a brain-

extracted image or a brain mask. 

 

       Despite its utility, brain extraction with BET does encounter challenges. The proximity of tissues 

like marrow, membranes, and blood vessels, often shifted during imaging, poses difficulties. However, 

for registration, the focus is on eliminating the majority of non-brain material rather than achieving 

absolute accuracy. However, in cases of quantifying specific brain components, a higher level of 

accuracy may be necessary, as in the context of segmentation. 
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Registration: 

       Let's start by understanding what registration entails. When we observe the following two images, 

it's evident that they are not aligned – one appears tilted concerning the other.  

 

       Ensuring alignment is crucial for picking a specific location within the image, represented by a 

particular row and column in 2D panels, signifying the same anatomy. Currently, these images don't 

share the same anatomy; this means that we cannot use the same row and column values to show a 

specific region.  

       It is helpful to make sure all our images have similar anatomy before we input them into a model. 

(However, we also need to use augmentation methods later on which changes our alignment again.) 

       Registration is the process through which images are brought into alignment. Post-registration, 

these images would be well-aligned, and a specific location within them represents the same anatomy.  
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       Registration is especially helpful in cases where we are dealing with quantifying structural change, 

correction for motion changes in time), combining across individuals in group studies including fMRI 

and diffusion (changes between individuals), and functional analysis. 

       Now, I begin the details about different things that need to be done in registration. I'll be 

discussing four main concepts you need to grasp: image spaces, spatial transformations, cost functions, 

and interpolation. Understanding these concepts is crucial for selecting the best options and achieving 

optimal registration for our specific problem. At the end, I will give an introduction to the two 

registration methods: Pathological Image Registration (Cost Function Weighting), and Small Field of 

View registration (Small FOV). 

1. Image Spaces  

       We say two images are inside the same space if we can use the same process to map them to the 

anatomy image space. Note that a difference in image resolution isn’t the same as a difference in space. 

1.1. standard space 

       Image spaces have multiple categories. The most familiar image space is the standard space, with 

examples like Talairach space and MNI space: Talairach space was initially introduced by Tara 

Contorno, who conducted detailed dissections on a postmortem brain, recording coordinates to create a 

standardized representation. However, the more common choice nowadays is the MNI 152 (or ICBM 

152), an average of MRI images from 152 young healthy individuals. This template allows us to 

establish a common way of describing anatomical locations within the brain using coordinates. (More 

details about other MNI types can be found here.) 

       Standard space atlases are also mostly available in MNI 152. Because, even if they were not 

generated for the same 152 individuals used to create the MNI 152 template, they have been registered 

and aligned with the standard space templates. (Atlases are templates or reference maps that serve as 

standardized representations of brain anatomy.) Some atlases can be seen below: 

https://brainmap.org/training/BrettTransform.html
https://en.wikipedia.org/wiki/Talairach_coordinates
https://www.lead-dbs.org/about-the-mni-spaces/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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1.2. Other Spaces 

       Other than the standard Space, we also have other spaces such as functional space (from fMRI), 

structural space (like in MRI), etc. We take each structural and functional image to have a different 

space. Because there might be a change in the orientation of the head between the acquisitions (the 

person might have moved). Or it might be that the structural images are taken in a different session 

than functional images from the patients. 

       Because the mapping of the coordinates between these images to the anatomy image space is 

different, we say they have different spaces. 

       Note that our images might have different resolutions. So, even if we map them all into the same 

space, the resolutions would be different, Thus, we usually define different resolutions for each space 

that we map our images into (2mm, 1mm, and 0.5 mm resolutions are common). So, a different 

resolution doesn’t mean a different space. 

       That’s why we need registration. To make sure we can map all our images to any space we need in 

the same manner (registration links different spaces together and aligns all our images). Once 

registration is done, we can transform or inverse-transform the information: 
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       Note that the outputs of the tools/software online, that preprocess the data might give you the 

output of different images in different spaces and you need to make sure all the outputs are in a suitable 

space before using them in your model. 

Be careful when dealing with MRI/fMRI image spaces. Unlike what you might expect, the tools 

designed for MRI/fMRI preprocessing usually use multiple types of coordinate systems. For example, 

when dealing with NIFTI data, they might use a voxel coordinate system, standard space coordinate 

systems, or some other coordinate system. An explanation from FSLeyes documentation can be found 

here. Another example is FreeSurfer. It maps the 3D brain data into 2D rectangles (for segmentation). 

▶ We already mentioned that there are many types of standard spaces. standard space coordinate 

systems also come from those. Such as MNI152 coordinates which could be used. 

To move our images to image spaces (/image space atlases) of our choice, we need to select and use 

the suitable registration type (by selecting the necessary Spatial Transformations allowed). This 

ensures that, later on, we can move our images from one space to another space easily. 

2. Spatial Transformations 

       Whenever we align our images, we need to decide what transformations we want to allow the 

registration to do. Basically, what things are possible within the alignment? Is it allowed for us to 

change the brain’s shape or size? Spatial Transformations specify these things. They are specified by 

their name (a partial description of the transformation), and the degrees of freedom (DOF). Here, we 

will discuss 3 of such transformations: 

2.1. Rigid body transformations (rigid registration): 6 DOF in 3D 

       Rigid body transformation gives us the ability to use the types of transformations that are usually 

usable on a normal physical object. That is, it gives us the ability to use 3 rotations (rotation with 

respect to 3 axes) and 3 translations (translation with respect to 3 axes) (this is why we have 6 DOF. 

Because 3+3=6). But we cannot change the shape or size. The rigid body transformation is usually 

used in the case of within-subject registrations. 

       This is done because we take the movement of a patient’s head into account. Because, when 

patients move their heads, they are only changing ‘where’ their brain is inside the space (the 

orientation, the rotations, and the position on the translations). They are not changing the size or the 

shape of their brains. 

https://open.win.ox.ac.uk/pages/fsl/fsleyes/fsleyes/userdoc/display_space.html
https://surfer.nmr.mgh.harvard.edu/docs/synthstrip/
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2.2. Affine transformation (affine registration): 12 DOF 

       In affine transformations, we still have 3 rotations and 3 translations which we had in rigid body 

transformation. But we add 6 extra DOF: 3 scaling (scaling with respect to 3 axes) and 3 skews/shears 

(skew with respect to 3 axes). Skew is similar to a combination of both rotating and scaling an image. 

Like below: 

  

 

 

 

 

 

       This transformation is either done to correct the distortions, which are linear (also called eddy 

current correction), or it is used to initialize non-linear registration. 

Now, we cover the non-linear registration: 

2.3. Non-linear transformation (non-linear registration): millions of DOF. Usually, 12 M 

       Here, our initial image could have millions of different weird shapes, like the following image. 

And we allow the registration algorithm to transform all those images using a non-linear 

transformation. 

   

       Of course, we still need to put some constraints on the transformation that happens here. We don’t 

want to break up the pieces of the brain’s anatomy during the transformation. Neither do we want to 



12 
 

fragment the brain and put different things in different places. To summarize, we want to make sure 

everything sticks together in the correct order during the registration. While not also removing any 

region by accident.  

       This is why we need some basis functions (such as B-splines) over some regularization, topology-

preservation, diffeomorphisms, etc. (these are mathematical methods) 

       This transformation is used for good-quality between-subjects registrations. Because for a good 

alignment between individuals, we need such a flexible algorithm. Note that the brain of a human 

being is similar to the fingerprint: completely different and unique for each human. 

The following image provides a comparison between linear and non-linear registrations: 

 

▶ To ensure non-linear registration doesn’t have too much freedom in its transformations, it is usually 

recommended to use a warp resolution of 10mm for MNI152 as the regularization. 

2.4. Global Scaling transformation: 7 DOF 

       A transformation used for good within-subject registrations (like rigid body). But we also have an 

extra global scaling (where the scaling is equal in all three axes). This transformation corrects for 

scanner scaling drift in longitudinal studies of Cost Functions. But this is not common to use. 

▶ Note that, unlike what it may seem like, a higher DOF does NOT mean you will get a better model 

later on. 
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▶ In general, Spacing of points = warp resolution = regularization = DOF 

3. Cost Functions 

       Cost functions are the functions we use to measure how good the alignment between our images is 

before we run the registration algorithm. 

       To make it short, these functions are necessary because the registration algorithm needs to have a 

way to identify whether or not our images are aligned. Then, if they are not aligned, the algorithm 

needs to activate and align them. 

       After all, unlike humans, the registration algorithm has no intelligence to understand this just by 

looking at the images. So, we need to find a way (cost functions) to make it understand when to 

activate the alignment algorithm. 

For example, we can understand that the following 2 images are not aligned by looking at them: 

 

       But our computer couldn’t do that. To make the registration understand that these 2 are not 

aligned, one basic method could be to subtract these images and ask it to look at the output. If the 

images are aligned, we expect it to be almost zero everywhere (an almost ‘flat’ image). However, if 

they are not aligned, the algorithm should be able to identify a pattern in the output. 

 

       The output has a clear pattern (it’s not ‘flat’ at all). So, our algorithm understands: these 2 images 

are not aligned and it needs to align them. 
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       This way, when we have a group of images and we want to check how aligned are these, we can 

take their pairwise subtraction, take the square root of the subtraction outputs, and sum them up. This 

is called SSE (sum squared error/ sum squared differences) in statistics. And here, this value shows us 

how aligned are our images: the smaller the SSE, the more aligned our images are. The registration 

algorithm should then align the images, such that we can minimize SSE as much as possible without 

changing the structure of our images too much. After all, we don’t want to make all our images 

identical to each other. 

▶ Some algorithms use the exact opposite of this: Similarity Functions have a similar process to the 

above method, but instead, they activate when the alignment is judged to be good. And try to find the 

maximum SSE value. 

       Now, I will discuss some famous cost functions and how they work. I will explain some 

mathematical background for these functions to help your understanding. But you could skip the 

details if you want. Similar to the other steps of MRI/fMRI preprocessing, these cost functions are 

predefined in most of the preprocessing tools you might be using. Also, note that these are just some 

examples. Depending on your problem, and the preprocessing software you are using, you might have 

better options available. ▶ Note that not all below cost functions are suitable for non-linear 

registration.  

3.1. Least Squares 

       This is the process explained above, where we minimize the sum squared differences between 

corresponding intensities in the reference and target images. It assumes that the relationship between 

the images is linear and seeks to find the transformation parameters that minimize the sum of squared 

intensity differences. This cost function could be used when you only have images of the same type 

and modality (e.g. when you only have T1 MRI images). 

3.2. Normalized Correlation 

       Normalized correlation measures the similarity between two images by computing the Pearson 

correlation coefficient between corresponding intensity values after normalization. It assesses the 

linear relationship and similarity of intensity patterns between images. 
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Similar to the least square cost function, normalized correlation could also be used only if you have 

images of the same modality (e.g. when you only have T1 images). 

This cost function allows for variations in overall brightness and contrast between the images. 

3.3. Correlation Ratio 

       The correlation ratio evaluates the similarity between images based on the ratio of variances in 

intensities before and after registration. It assesses how well the intensity patterns match between 

images while accounting for variations in global intensity distributions. 

This cost function is suitable for aligning images of any MR modalities (i.e. fMRI, MRI, rs-fMRI, 

diffusion MRI, etc.), providing robustness to variations in overall intensity levels. 

3.4. Mutual Information 

       Mutual information quantifies the amount of information shared between two images by 

measuring the statistical dependence between their intensity distributions. It does not assume linearity 

and is capable of capturing non-linear relationships between images. 

       This cost function is versatile for aligning images of any modalities (i.e. MR, CT, PRT, etc.) and 

is the most flexible in terms of modality. It works by assessing the shared information content 

regardless of intensity variations. 

3.5. Normalized Mutual Information 

       Normalized mutual information is a variant of mutual information that normalizes the mutual 

information measured by the entropy of the images. It quantifies the amount of shared information 

between images while accounting for differences in their individual information content. 

       This cost function, similar to mutual information, is suitable for aligning images of any modalities 

(i.e. MR, CT, PRT, etc.) by assessing the shared information content while accommodating variations 

in individual image entropy. 

3.6. Boundary-Based Registration (BBR) 

       BBR focuses on aligning image boundaries, particularly useful for EPI distortion correction. It 

utilizes intensity gradients along tissue boundaries to drive registration, emphasizing local alignment in 

regions with distinct tissue boundaries. 
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       This cost function is specialized for aligning functional and diffusion MRI images with EPI 

distortion correction, optimizing registration in areas with high-contrast edges. 

3.7. Non-linear registration 

       As mentioned before, many MRI/fMRI tools don’t usually accept any of the above cost functions 

(there might be some specialized tools that do that, though. We need to carefully check all available 

tools and make sure). 

       For example, FNIRT which is one of the most used algorithms for non-linear registration, is 

primarily constrained by its cost function, which is exclusively the least squares cost function. This 

constraint limits FNIRT to registering images of the same modality, typically two T1-weighted images 

(although, this is usually not that big of a problem. Because most researchers are interested only in T1 

images). 

       A feature that many algorithms (such as FNIRT) have is the usage of a bias-field model when 

doing the registration. This addresses the variations that exist in the image intensity of different regions 

Bias fields often manifest as darker or lighter areas within the image due to magnetic field 

inhomogeneity (this will be explained in detail later) 

       Such non-linear registration methods can deal with the bias-field problem by squeezing/expanding 

the white matter (and expanding/squeezing the dark matter at the same time) in the necessary regions 

(this increases/decreases the average density of the problematic regions in a suitable manner. 

4. Interpolation and Masks (an old paper regarding this) (also check: 1, 2, 3) 

       MR data usually has a big limitation: the resolution of images. In general, all our images have poor 

resolution. This is why a post-processing technique that allows the best possible resolution to be 

obtained is needed. This is why we need interpolation. Assume we put a grid over our images. Now, 

interpolation is a method that allows us to find the intensity values of unknown points inside each grid 

block. This way, by adding new information about each point to each grid block (we ‘fill in’ each grid 

block), we slowly update the intensity of the image and try to reach the best possible resolution. 

       For example, in the below image assume that we initially put the white-colored grid on our image. 

Where, the grid lines intersect only at the image pixels (for example, here our image is very simple and 

has only 4 pixels. This grid would be much larger for higher resolution images). Now, we rotate the 

https://ieeexplore.ieee.org/abstract/document/816070?casa_token=N7yRVsSCq1UAAAAA:a3QpkCD08KpniMxNVYAc2NKbcp6PSze9WmKY9psCH104lpKDyWAiMUY4p85zdFjzZ6L9w42zsA
https://pubmed.ncbi.nlm.nih.gov/9294580/
https://www.youtube.com/watch?v=n0zHyO1JXr8
https://www.youtube.com/watch?v=o80w7-p1jOA
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grid and get the yellow grid. We are interested in finding the value of these newly generated points that 

don’t align with the white group. For example, assume we want to find the intensity of the yellow point 

(the rotated result of our image’s red pixel). 

 

       Unfortunately, our image doesn’t have any information about this yellow point. Because this point 

is not within our original image pixels. We need interpolation functions to figure such problems out. 

There are different approaches for interpolation and we’ll have a short review on some of them here. 

4.1. Nearest Neighbor 

       Nearest Neighbor is the most straightforward: it checks the distance of the yellow point from each 

of the 4 grid corners that surround it and finds the point that has the shortest distance (the red point in 

this example). Then, it copies the value of the nearest point to the new point. The same process would 

then continue for all other points on the yellow grid. 

The advantage of NN is that it is fast. But it usually results in blocky edges and fails to preserve the 

details well. 

4.2. Trilinear 

       Trilinear (or bilinear in 2D) interpolation considers the immediate neighbors that surround the 

target point (in this case, the 4 red points) and computes a weighted average based on their distances. 
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Such that, the shorter the distance from the yellow point, the more effect on the yellow point’s 

intensity. The weighting is done using a linear function here. 

 

This method is fast, similar to NN. And it leads to smoother results. But it usually blurs internal details. 

4.3. Spline 

       This method is very similar to the previous approach. We again use a weighted average to 

calculate the intensity of the yellow point. But here, instead of just taking the 4 surrounding points, we 

take the average between all intersection lines on the white grid. Basically, we take a weighted average 

over all the red points in the following image (weighted based on their distance to the yellow point). 

 

       This method provides sharper boundaries and better preserves the details. However, it is slower 

than NN (albeit still fairly fast) and it can lead to problems like ringing. Because we don’t constrain the 

output range. This could result in output values exceeding the original data range. (e.g. if you want 
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your intensity to be always smaller than 2, taking the average over a large number of points might 

result in a value larger than 2). 

Below, you can compare the outputs resulting from the previous 3 methods: 

 

       Two other famous approaches are Sinc interpolation (it’s very mathematical and uses the Sinc 

function. It’s a bit time-consuming as I understood. But the results are better compared to the previous 

3 methods. Some details here) and k-space interpolation methods (such as this) that might be used. I 

will not add their details now (I might do so later). 

5. Pathological Image Registration (Cost Function Weighting) 

       This type of registration is a method we use as the solution to a special problem: when we have 

pathology or artefacts inside our image. To summarize, we need this method as a way of telling the 

registration that there is an area of the image that is not normal (it is not consistent with what we see in 

the other images that we're trying to register). Because we need to make sure that there's a good match 

between the images after they've been transformed (but the existence of pathologies causes a problem 

here).  

       So, we need to tell the registration to ignore the pathology (or artefact) areas where we know that 

there's just never going to be a good match. So that those areas don't bias the rest of the registration (if 

the registration algorithm doesn’t ignore those areas, it would instead try to change the structure of 

other non-problematic images, and transform them into the structure of the problematic image). 

https://www.sciencedirect.com/topics/engineering/sinc-interpolation
https://arxiv.org/abs/2307.12672
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       Cost function weighting itself is quite straightforward: all We need to do is to set up another image 

which is a weighting image, and that image needs to be zero in the area that we want the registration to 

ignore and one everywhere else. One such example can be seen below: 

 

▶ Cost function weighting can be done whether we're doing linear registration or nonlinear 

registration. 

▶ Be careful not to put zeros in the background because it's essential for the registration to understand 

where the brain stops. If you have told it to ignore everything outside of the brain, it never knows that 

there is non-brain there, and that's a problem. So, we put one everywhere, including the background, 

except the areas around the pathology or the artifact that we want to ignore. 

6. The Overall Overview of Registration 

       Now that we have a broader understanding of the registration process, let's go through a summary 

of the overall registration process: 

• Step 1: First, we need to find a suitable spatial transformation method. Then, the registration 

algorithm knows an estimate of what transformation needs to be done. (In this step, we’re still not 
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generating any new images. We’re just estimating what transformation ‘needs to be done’. So, no 

resampling is done yet). In this step, we select the previous things we talked about like the type of 

registration, cost function, interpolation, etc.  

• Step 2: Now, we apply the transformation we have decided on. Meaning that, by resampling, we 

create a new, modified image. 

• Note that in each transformation step, there is usually a degradation in the image quality. This is 

why we need to delay resampling as much as possible to avoid reducing the image quality too 

much. (We don’t want to apply resampling multiple times, especially not the interpolation step)  

• Other terms you might hear:  

o Co-Registration is doing registration between 2 images 

o Spatial Normalization is doing registration. When we want to map our images into a 

standard space such as MNI 152. 

7. Transforming and Thresholding Masks 

       Binary masks are essential tools in image processing, often used to represent regions of interest or 

specific structures. When transforming these masks from one space to another, interpolation becomes 

necessary to ensure accurate representation. 

       A binary mask consists of black and white regions, where the white areas denote the region of 

interest, while the black areas represent everything else (we’ve already seen multiple examples in 

previous sections). Binary masks are commonly utilized to isolate and analyze specific structures 

within images, aiding in various analytical tasks. 

       Usually, Trilinear interpolation is a widely used method for transforming binary masks between 

different spaces. This is because, unlike simple binary masks, trilinear interpolation assigns values 

between zero and one to voxels along the edges of the mask. This interpolation takes the degree of 

overlap between the new voxel and the existing ones into account, offering a more robust 

representation. After this, thresholding is used to convert interpolated values back into binary form. By 

adjusting the threshold value, we can control the inclusiveness of the mask.  
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       Different threshold values result in varying degrees of inclusiveness or conservatism. High 

Threshold (e.g., 0.9) leads to a smaller area of inclusion, preserving only voxels with high overlap with 

the original mask. Medium Threshold (e.g., 0.5) includes voxels with moderate overlap, expanding the 

area of inclusion beyond the high threshold. Low Threshold (e.g., 0.1) results in a high degree of 

inclusion, covering voxels with minimal overlap, including the core as well as surrounding areas. 
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Bias-Field Correction 

       A feature that many algorithms (such as FNIRT) have is the usage of a bias-field model when 

doing the registration. This addresses the variations that exist in the image intensity of different regions 

Bias fields often manifest as darker or lighter areas within the image due to magnetic field 

inhomogeneity (basically, some parts of the brain might be lighter than they should be, while some 

parts might be darker). So, it is helpful to understand and compensate for these variations during 

registration. Although, this feature might not always be beneficial and in some cases, you may want to 

disable such options from your registration. For example, when dealing with quantitative images, such 

as T1 relaxometry scans, you may want to disable bias field modeling to preserve quantitative values. 

However, for standard neuroimaging applications, having bias field modeling enabled improves the 

quality of registration.  

       To be more technical, bias-field (or illumination artifact) happens because of a lack of radio-

frequency (RF) homogeneity. Although this is not significantly noticeable on visual examination, it can 

seriously degrade the volumetric quantification of MR volume upon applying the automatic 

segmentation algorithms that use intensity levels.  

       Various approaches exist to deal with bias-field effects, both during and after image acquisition. 

Some of These methods that aim to enhance the acquisition process itself are: phantom-based 

calibration, multi-coil imaging, and specialized sequences. On the other hand, retrospective techniques 

and algorithms such as filtering, masking, intensity adjustments, and gradient-based corrections could 

be applied post-acquisition to address bias-field artifacts. 
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fMRI: Some relevant registration 

1. EPI Distortion Correction 

       When dealing with fMRI and diffusion MRI, a rather important type of preprocessing is the 

correction of Echo Planar Imaging (EPI) distortions. These distortions happen because the magnetic 

fields used in MRI aren't uniform everywhere. This is particularly troublesome near the front and 

bottom parts of the brain, where the signal can get displaced or lost entirely. These distortions show as 

geometric aberrations, where the signal is not located where it should be, and as signal loss, 

characterized by areas of the image lacking signal altogether. To deal with these issues, the concept of 

field maps is introduced. Field maps are special MRI acquisitions that measure the magnetic field's 

variations across the brain, providing invaluable data on field deviations. This information is 

particularly crucial in areas prone to signal loss, such as the inferior frontal and temporal lobes. 

 

       The correction process involves using these field maps to predict and correct spatial distortions, 

thereby enhancing the registration quality. It's important to note, however, while geometric distortions 

can be corrected, signal restoration is not possible once lost. Understanding the patterns of signal loss, 

though, can aid in making more informed corrections and improving the overall quality of the 

registration. 
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       One of the primary challenges in EPI image registration to structural scans is the complex nature 

of the distortions present. Effective correction strategies, notably the utilization of field maps, can 

significantly improve the alignment accuracy, making the registration process more reliable. Among 

the techniques employed for registration is Boundary-Based Registration (BBR), which focuses on the 

more reliable boundary between white matter and gray matter. This approach provides robustness even 

in the presence of EPI distortions, making it particularly effective for structural to EPI registrations. 

 

       Evaluating the efficacy of distortion correction involves comparing corrected and uncorrected 

images, with properly corrected EPI images showing better alignment with structural scans, especially 

in regions prone to distortions. The success of the correction process is based on the quality of the field 

maps and setting accurate parameters like effective echo spacing and the phase encoding direction. 

       The use of EPI distortion correction is critical in fMRI imaging. This method is great for capturing 

images quickly. However, EPI has a problem: it can produce images with distortions and areas where 

the signal is lost, making it tricky to match these images accurately with more detailed structural MRI 

scans. 

2. Unwarping 

       After correcting for distortions in EPI images, the next step is to align these corrected images with 

high-resolution structural scans. This process is a type of registration, and it's essential for combining 

fMRI or diffusion MRI data from EPI with detailed anatomical information. 
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       The registration process involves matching the corrected EPI images to a structural scan, which 

serves as a reference. This matching is done by adjusting the position, orientation, and sometimes the 

scale of the EPI images so that significant features in both sets of images line up correctly. This 

alignment allows researchers or doctors to see where functional or diffusion activities are happening in 

relation to the detailed anatomy of the brain. 

       Field maps play a key role in this process. Before registration, the field maps are used to unwarp 

EPI images. Unwarping is the process of correcting the EPI images based on the distortions identified 

by the field maps. These maps show us where the magnetic field was not uniform and by how much, 

allowing us to reverse the distortions in the EPI images. This step is crucial because it ensures that the 

geometric distortions and signal displacements in the EPI images are corrected as much as possible 

before attempting to align them with the structural scans. 

 

       The unwarping process uses the information from the field maps to calculate how much each part 

of the EPI image needs to be adjusted. This involves shifting the positions of pixels in the EPI images 

so that they more accurately represent where they should be in reality. The amount and direction of 

these shifts vary across the image, depending on the variations in the magnetic field shown by the field 

map. 

       Once the EPI images are unwarped, the registration process can begin. During registration, various 

algorithms and techniques are used to find the best fit between the EPI and structural images. One 

common technique used in this context is Boundary-Based Registration (BBR), which focuses on the 

clear boundary between gray and white matter as a reliable feature for alignment. BBR is particularly 
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effective because it relies on features that are less likely to be distorted in EPI images, making it a 

robust choice for aligning these images with structural scans. (Some details) 

       In practice, ensuring the accuracy of registration involves carefully checking the alignment in 

areas known to be prone to distortions, such as the frontal and temporal regions of the brain. It also 

means being mindful of areas with signal loss, as these won't align well due to the lack of data. 

Researchers and clinicians must critically assess the registration quality, especially in these challenging 

areas, to ensure the functional or diffusion data is accurately mapped onto the brain's anatomy. 

       This step in the imaging process is vital for a wide range of applications, from research studies that 

explore brain function to clinical diagnoses that depend on accurately locating areas of interest within 

the brain's complex anatomy. 

3. Co-Registration 

       A combination of these registration steps in fMRI is called co-registration (the precise alignment 

of functional and anatomical images within the same individual.) In This section, I will give a more 

general summary of some more reasoning and some other things that could be used in this step. 

       Co-Registration ensures that the areas of brain activity detected through fMRI can be accurately 

localized within the structural context provided by anatomical MRI or other imaging modalities like 

PET or CT. The anatomical reference is often derived from a high-resolution 3D MR sequence such as 

MP-RAGE, which provides detailed structural information with isotropic voxels, allowing for versatile 

manipulation of the data including rotation and re-slicing. 

       The co-registration process employs various image correction and alignment techniques, which 

often start with image resampling through interpolation to adjust for any differences in voxel size or 

resolution between the functional and anatomical images. Following this, a series of rigid body 

transformations are applied, which include translations (shifts in the image position), rotations (turning 

the image around the x, y, and z axes), zooms (scaling the image size), and shears (distorting the image 

shape). These transformations are iteratively refined using an optimization protocol that aims to 

minimize a cost function, which quantifies the disparity between the functional and anatomical 

datasets. The optimization ensures that the functional data are accurately overlaid on the anatomical 

images, providing a coherent and precise representation of where brain activity occurs relative to the 

brain's anatomy. 

https://www.brainvoyager.com/bv/doc/UsersGuide/Coregistration/Boundary-BasedRegistration.html
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       Normalization, while related to co-registration, extends the process by aligning individual data to a 

common anatomical template, allowing group analyses. This involves more complex transformations 

to account for the anatomical variability across subjects, including affine transforms and nonlinear 

methods. Regularization techniques may be employed to constrain these transformations, preventing 

unrealistic stretching or shrinking of brain structures. Tissue segmentation can further refine the 

process by differentiating between gray and white matter, improving the alignment accuracy. 

       The choice of the anatomical template is significant in normalization. Historically, the Talairach 

Atlas, based on a single post-mortem brain, was widely used. However, templates from the Montreal 

Neurological Institute (MNI), derived from MRI scans of several hundred healthy adults, are now more 

common. These templates, like the widely used ICBM152, offer a more representative anatomical 

framework for group analyses in fMRI studies. 

       Co-registration and normalization are foundational elements in the preprocessing of neuroimaging 

data, ensuring that functional imaging findings can be accurately interpreted within an anatomical 

context. The precision of co-registration directly impacts the reliability of localizing functional activity, 

making it a critical step in the analysis pipeline of fMRI studies. By aligning individual subject data to 

high-resolution anatomical images and subsequently to standard templates, researchers can conduct 

detailed single-subject analyses and robust group-level studies, enhancing our understanding of the 

functional architecture of the brain. 

4. Small Field of View registration 

       Small Field of View (FOV) Registration is a technique used in MRI imaging, particularly in fMRI, 

where the focus is on a specific area of interest within the brain. This approach allows for enhanced 

spatial or temporal resolution by limiting the scope of the scan to a smaller region. However, this 

reduction in FOV introduces challenges in the registration process, which is the alignment of these 

images with larger, whole-brain structural scans. 

       In the context of Small FOV Registration, the primary challenge is the limited information 

available due to the reduced FOV. This scarcity of data can hinder the effectiveness of standard 

registration techniques, which rely on a comprehensive view of the brain to align images accurately. To 

address this, a multi-stage registration approach is used, introducing an intermediary step that involves 
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the use of a whole-brain EPI image as a bridge between the small FOV functional images and the 

structural scans. 

       The process begins with the acquisition of a whole-brain EPI image, which shares the same 

functional contrast and acquisition parameters as the small FOV images but covers the entire brain. 

This whole-brain image serves as an important link and provides a broader context that allows the 

alignment of the small FOV images with the structural scans. 

 

The registration process is then done in three stages: 

• Small FOV to Whole-Brain EPI: In the first stage we align the small FOV images with the 

whole-brain EPI image. This step typically employs a translation-only registration, as the slice 

prescription remains consistent between the small FOV and whole-brain images. The goal here 

is to accurately position the small FOV within the broader context provided by the whole-brain 

EPI. 

• Whole-Brain EPI to Structural Image: Once the small FOV images are correctly positioned 

within the whole-brain EPI, the next step is to register the whole-brain EPI to the structural 

scan. This stage uses standard registration techniques (unwarping), as it involves aligning two 

comprehensive views of the brain. 



30 
 

• Structural to Standard Space: The final stage aligns the structural image with a standard brain 

template, ensuring that the small FOV functional data can be accurately mapped onto a 

common reference space for analysis and comparison. 

The following image shows the use of Small FOV Registration in FSL: 

 

       This multi-stage approach significantly enhances the registration quality for small FOV images by 

providing a suitable pathway from the localized functional data to the broader anatomical context. It's 

important to plan and acquire the whole-brain EPI image during the imaging protocol to ensure the 

success of this registration strategy. 
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Dealing with fMRI Time-Series Problems (more resources on fMRI time series here and here) 

       Unlike the 3D MRI data, functional MRI also has a 4th time series dimension. This difference 

might not seem significant at first, but we’ll need multiple extra steps of fMRI preprocessing because 

of this. You will see why this time-series dimension of fMRI could result in huge problems, if not 

preprocessed properly. We also need to get rid of lots of structured noise and artefacts. 

       To get a taste of why time-series preprocessing is complex, remember that as time passes, the 

human body doesn’t stay 100% constant. The patient’s head would move inside the scanner. So, the 

fMRI images at different times are not aligned. The patient would breathe inside the scanner. This 

causes the brain size to change in different time-series slices. The eyes of the patient move inside the 

device. This would again affect the brain. Etc. etc. etc. All these problems need to be dealt with 

accordingly. 

▶ Not all of the following steps need to be done on your data. Depending on your study, decide on the 

suitable combination and apply it during the preprocessing stage. 

1. Reconstruction from k-Space Data 

       The step of image reconstruction is usually done by the scanner device. To summarize, scanners 

automatically reconstruct images from their native format, known as k-space, into the familiar image 

format using sophisticated algorithms. While these algorithms generally perform well, they might 

occasionally produce artifacts. Artefacts are typically easy to spot and require different approaches for 

resolution. The following images show some artefacts that might exist: 

 

• The left image shows RF spiking which manifests as irregularities in the image. This is caused 

by sparking or electrical faults. 

https://andysbrainbook.readthedocs.io/en/latest/installation/fsl_mac_install.html
https://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf2/pdfs/Ch10.pdf
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• The image in the middle shows wraparound artifacts that appear as distortions at the image 

edges. This is caused by insufficient field of view provided by the operator. 

• The right image shows RF Interference that occurs when external signals infiltrate the scanner 

room due to improper sealing or closure of doors. 

       RF spiking is easily fixed. There are methods that easily deal with it. On the other hand, defects in 

the reconstruction algorithm and wraparound artifacts are not fixable. For those, you would need a 

rescan. And, RF interference problem needs to be addressed depending on its location and severity. It 

might be fixable and doesn’t cause much problem or it might be extremely troublesome. 

       The step of checking the data could be done automatically. Using exploratory analysis methods 

such as independent component analysis (ICA). But it’s suggested to just spend some time manually 

checking the data. It doesn’t take more than a minute to check each image. 

▶ If you’re working on famous publicly available datasets (e.g. ADNI), there’s a good chance this step 

has already been done by experts before the data was made available publicly. But you might still want 

to make sure of this by checking the data directly. 

2. Motion Artefact Correction  

       Even small movements from patients during scanning can have a significant impact on image 

quality. Motion correction is necessary because subjects inevitably move to some extent. And, despite 

precautions such as padding around the head, you should always expect some movement in every 

fMRI image (especially for the elderly and patients with severe diseases).  

       Although this movement is usually slight and not easily visible to the naked eye, it needs to be 

dealt with properly or it could cause serious problems in your subsequent models and analysis.  

       This is because, when a subject moves, even by a fraction of a voxel (the smallest unit of volume 

in imaging), it can cause significant changes in signal intensity at the border between brain and non-

brain tissue. For example, if a subject moves half a voxel, it can induce a 50% change in signal 

intensity at that border. This is because the signal from the brain tissue is mixed with a signal from 

non-brain tissue due to the limited resolution of the imaging. (To make the explanation even simpler: 

Imagine looking at a point near the edge of the brain in an fMRI scan. If a patient moves slightly, this 
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point might go from being inside the brain to being outside, or the reverse. This would cause the 

intensity of that point to significantly change, maybe even doubling or halving.) 

Note that a voxel is 2 mm in size. So, a fraction of a voxel is, of course not visible to the naked eye. 

       The way to do motion correction is very easy. All we need to do is to apply a bunch of different 

registrations. One registration is done per fMRI image. First, we select a target reference from each 

fMRI image. Then, we apply rigid-body registration within each fMRI image and align each fMRI 

image to the target reference selected (the target reference image is a 3D slice of the brain taken from a 

specific time of the time-series dimension). We use rigid-body registration because we only want to fix 

the problem of patient movement (the brain doesn’t change in size or shape. It only moves – it rotates 

or translates). Selecting the target reference doesn’t have any rules. We can take it from the beginning, 

the end, or from the middle of the time-series dimension. By default, many preprocessing tools select 

the middle 3D brain slice as the target. 

       The following shows the effect of Motion Correction used vs not used. The visualizations show 

the false positives received regarding functional brain activation. 

 

       We can observe that there is not much difference in using motion correction when we have 

uncorrelated motion (movement that is not synchronized with the timing of the experimental stimuli or 

events. Without motion correction, uncorrelated motion appears as noise, leading to minimal activation 

observed during analysis. Motion correction reduces noise, resulting in higher t statistics and increased 

activation detection). But for stimulus-correlated motion, there is a huge decrease in the false positives 
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when motion correction is used (Stimulus-correlated motion occurs when the participant's movement 

coincides with the timing of the experimental stimuli or events. This means that the motion occurs 

concurrently with the presentation of the tasks or stimuli being investigated). 

▶  After performing motion correction, some tools might generate a summary of motion parameters 

for you. For example, the MCFLRT algorithm (from FSL) provides relative and absolute motion 

graphs. If you want to analyze those graphs, know that relative motion graphs show motion to change 

from one time point to the next (this graph only shows you quick and sharp changes, not slow ones. 

Note that sharp changes are more problematic compared to slow ones). While absolute motion graphs 

show motion change from each time point to your selected target reference time point (this graph 

shows both sharp changes and slow drifts that happen through time). Following is an example output 

graph for one fMRI image: 

 

3. Slice Timing Correction 

       Now, we into account the take the fact that we don't acquire all of the brain at one time. To 

summarize the process, in fMRI, each 3D image of the brain called a volume, is not captured all at 

once. Instead, it's acquired through a series of individual 2D images, or slices, taken one after the other 

over a period of time. These slices are then stacked together to form a 3D volume. Then, we continue 

this process over and over again through time. In this way, we construct a 4D fMRI image (although, 

some recent devices are able to take multiple 2D slices at once. But there are still no devices that could 

take all of the slices at the same time). 

       This is where the problem comes in: there exists a timing difference between when each slice is 

acquired within the volume. Without proper adjustment, differences in slice acquisition times can 

distort the data. For example, a stimulus may appear to peak earlier or later in different slices due to 

timing discrepancies (but in real-time, that stimulus has the same effect shape on all slices). This means 

we need to properly adjust the timing of each 2D slice in each 3D volume of our fMRI images to 
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account for the delay in acquiring each slice of the brain. The process we use to deal with this problem 

is called Slice Timing Correction. There are multiple ways to do this step: Shifting the data using 

Interpolation, or Utilizing Temporal Derivatives to Shift the Model itself (this works on more simple 

statistical models. Not more complex ML models). I will now explain these methods. 

Shifting the data using Interpolation 

       One way to approach slice timing correction is to first shift the data to achieve consistency 

between the model and the acquired data. Then, use interpolation to adjust the timing of acquired 

slices, this ensures alignment with the model. 

       Shifting the data involves adjusting the timing of each acquired slice to align them temporally with 

a reference point. This reference point is often chosen as the midpoint of the acquisition time series. 

This shift is calculated based on the known timing differences between the acquired slices. For 

example, if one slice is acquired 1 second after another, the data for the later slice can be shifted 

forward by 1 second to match the timing of the earlier slice. This way, we can ensure that the neural 

activity captured in each slice is aligned correctly with the experimental design. 

       Then we use interpolation. This is the same technique we described in registration. But here, 

instead of doing the interpolation based on the space, we do it based on time. To interpolate the data, 

the signal values at specific time points within each slice are estimated based on neighboring data 

points. This estimation allows for the creation of a temporally adjusted signal that accounts for the 

timing differences between slices. We already discussed some famous interpolation techniques before. 

Each of which vary in complexity and accuracy, with sinc interpolation being particularly effective but 

computationally intensive. 

       However, as we mentioned in the registration part, doing interpolation usually alters the shape and 

quality of the signal, impacting data accuracy (this was the reason we mentioned we need to avoid 

resampling as much as possible).  

       Thus, another method is shifting the model to match the expected timing changes in the acquired 

slices. In this way, we can maintain the integrity of the model while compensating for timing 

variations. 

Utilizing Temporal Derivatives to Shift the Model Itself 
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       This one gets really mathematical so I won’t go into the details. To summarize, temporal 

derivatives refer to the rate of change of a signal over time. They capture how the intensity of the 

signal varies with time, indicating the direction and magnitude of changes. One way to use temporal 

derivatives is to add them into our model (usually GLMs. But there are some ways to incorporate 

temporal derivatives inside ML/DL approaches as well) framework, which is a common statistical 

approach used in fMRI data analysis. In the GLMs, by including temporal derivatives as additional 

regressors, we can effectively adjust the timing of the model to match the timing of the acquired data. 

These regressors capture the temporal dynamics of the experimental design, allowing the model to 

flexibly adjust to timing variations in the acquired data (the process is automatically done by the GLM 

model as it’s trained). 

 

       The above image shows a brief summary of the process. Basically, the temporal derivative shows 

us the slope derivative) function of the signal. If we add this to the original GLM model (based on the 

Taylor approximation formula) and train the new GLM model, we observe that the resulting GLM 

would be automatically ‘shifted’ in time for each 2D slice in a suitable manner. And the slice timing 

issue would be dealt with. 

4. Motion non-rigid-body artefact problems 

Now, we go back to dealing with problems of motion again. Remember that in the motion artefact 

correction step we dealt with the problems arising from the rigid body motion between different 3D 

brain images as we move through the time-series dimension. But, what about the effects of the 

patient’s movement between the 2D slices within each 3D brain image? 
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       We already explained that each of the 3D brain images of an fMRI image is taken at different 

times. This means that when some 2D slice is taken, the brain would have some motion until the next 

2D slice would be taken. This means the 2D slices that construct a 3D brain image are not actually 

parallel as they should be! Also, there are other motion artifacts that occur when a subject moves in the 

scanner such as spin history (the phenomenon where a spin (a property of atomic nuclei) transitions 

from one slice to another during the acquisition process) and susceptibility effects (Susceptibility 

effects arise from variations in the magnetic susceptibility of tissues within the brain. Different tissues 

have different magnetic properties, which can cause distortions in the magnetic field during fMRI 

scanning). 

       To summarize, just one step of motion artefact correction is not sometimes enough. Because 

motion artefact correction only takes the general rigid-body movements into account. But the non-

rigid-body effects of motion on the data. Such artefacts severely degrade functional results. This is 

usually worse for stimulus-correlated motion.  

Some potential analysis remedies exist for cases where you feel motion artefacts cause a problem: 

• Motion Parameter Regressors in GLM: This method involves adding motion parameters 

(mainly the 6 rotation and translation parameters that are calculated by algorithms such as 

MCFLIRT. Non-linear parameters could also be included) as regressors in the model during 

statistical analysis. By including these parameters, the model can account for motion-related 

variance, effectively regressing the effects of motion from the data. This is similar to the 

temporal derivative approach we discussed previously. This method has the disadvantage that 

we assume our parameters have a linear effect on the data. 

• Removing Artefacts with ICA Denoising: Independent Component Analysis (ICA) is a data-

driven technique used to separate signal from noise in fMRI data. What ICA does is decompose 

the data into a set of independent components that explain the interesting structure of the data 

(they could be about the neural signals or the noise). Each component would have a spatial map 

and a time series associated with it. Then, by looking at these two elements of each component, 

ICA helps us identify and remove components related to motion artifacts, leaving behind the 

neural signal of interest. This method is especially useful on resting-state fMRI. But the 

advantage is that in addition to motion noise, it also helps us identify other types of noises such 

as physiological-related noise, and other MRI-related artifacts. The disadvantage of this method 
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is that it is much more time-consuming compared to other methods.: first ICA should be 

applied, and then the noise components should be identified, either manually or by specific 

software tools. Then, those components should be removed and the remaining components 

should be added together again. Allowing you to preprocess your images one by one and get 

the new dataset. 

The following image shows how some ICA components might look like: 

 

• Outlier Timepoint Detection and Exclusion: Outlier detection involves identifying time points 

in the fMRI time series that deviate significantly from the expected pattern of neural activity. 

These outliers may result from motion-related artifacts or other sources of noise. By employing 

outlier detection techniques within your GLM models, such as robust regression or Studentized 

residuals, you can identify and exclude problematic time points from the analysis. This step is 

especially useful if we have sudden motions (big jumps). Such cases are almost guaranteed to 

be detected by this outlier approach. (in this method, we select a threshold and if our change at 

some time point gets larger from the selected threshold, we consider it to be an outlier. And the 

effect would be removed from the data.) 

• Rejection of Subjects Displaying "Excessive" Motion: In cases where motion artifacts 

significantly compromise the quality of the data, you may just exclude the image from analysis. 

▶ These methods are not always needed. We only need them in cases where non-rigid-body effects are 

large. Because our goal is not to remove all motion artefacts from our data. Our goal is to remove the 
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problematic and large motion artefacts (e.g. our goal is not removing small motions of 0.01 mm size. 

Our goal is removing larger artefacts of 1~2 mm) 

5. Spatial Filtering 

       Spatial filtering, also known as spatial smoothing or spatial blurring, is a common preprocessing 

step we use in fMRI data preprocessing. This step is pretty straightforward compared to previous steps. 

All we do in this step is to blur our images. This step probably sounds weird when you first hear it. 

After all, the spatial resolution of fMRI images is very low by itself. Why would we want to make it 

worse? 

  

There are two main advantages to this: 

• Increasing the Signal-to-Noise Ratio (SNR): One of our main reasons for spatial filtering is to 

enhance the SNR of the fMRI data. The SNR represents the ratio of the strength of the signal 

(i.e., brain activation) to the level of background noise. By applying spatial filtering, we will 

reduce the existing noise in the data through a process of averaging neighboring voxels (spatial 

filtering is simply taking a weighted average of neighboring voxels. First, we define a Gaussian 

kernel that holds the weights. Gaussian smoothing assigns these weights to neighboring voxels 

based on their distance from the central voxel. Then, we take the average using those weights). 

This reduction in noise relative to the signal enhances the overall detectability of brain 

activations. (check here and here) 

A simple Gaussian Kernel:  

https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm
https://fiveko.com/gaussian-blur-filter/
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• Minimum Smoothness Requirement for Gaussian Random Field Theory (GRFT): Another 

reason to use spatial filtering is to ensure a minimum level of "smoothness" in the fMRI data, 

which is necessary for certain statistical analyses later on, particularly those based on Gaussian 

random field theory (GRFT). GRFT is a statistical framework commonly used for thresholding 

fMRI data to identify significant brain activations. “Smoothness” of our images refers to the 

spatial continuity of the fMRI signal, which helps in estimating the underlying noise 

distribution accurately (Basically, When the fMRI signal is smooth, it means that nearby voxels 

tend to have similar values, this means we expect a gradual transition in neural activity 

patterns). Without sufficient smoothness, the assumptions of GRFT may not hold, giving us 

unreliable statistical inference results. 

       However, you should remember that although Spatial Filtering is very important, it still blurs the 

image and affects the image resolution. Especially, blurring the boundaries between activated and non-

activated regions causes smaller activation areas to become less distinct or even entirely obscured. 

There are two ways to approach this: 

• You can choose to skip the spatial filtering step entirely: if you plan to use a model that is 

robust to the noises of the data, you might decide to skip this step. 

• Or, to balance the benefits of noise reduction with the preservation of spatial detail, the 

recommended approach is to apply a modest amount of spatial filtering. This involves using a 

Gaussian kernel with a relatively small FWHM (Full Width at Half Maximum) parameter. 

Usually, an FWHM around 3~6 should be safe enough. 

6. Temporal Filtering 

       Temporal filtering works by looking at the time-series within each voxel. There is a large amount 

of information contained within the time series of each voxel. Some of which are not related to the 

pure brain activation that is of interest. So, we first need to discern various components contributing to 

the signal. Then, we need to remove the components that are not related to the signal of the brain itself 

directly. This process is known as Temporal Filtering. 

       When we check the time-series of each voxel, in addition to the main brain signal that we need, 

they also contain scanner-related signals and physiological signals. All three of these could have both 

high and low-frequency components. For example, the image below shows us the time-series of a 
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voxel’s signal. We can see a general increasing trend but with a high frequency of up and down 

movements at the same time. The fact that there is a general increasing trend might be because of the 

scanner. On the other hand, we see a constant up and down movement from the signal. This one might 

be because of physiological elements. For example, it might be because of the patient’s breathing. 

When the patient breaths, the brain gets slightly affected. This would result in the brain signal going 

through a temporary increase. Or this up and down movement might also be affected by the heart’s 

cardiac cycle. Etc. etc. etc. What matters here is to identify, and separate these signals without 

removing the main signal of interest. 

 

       To be more detailed, the low-frequency movement in time-series (shown by a slow, gradual 

change in intensity over time) mostly stems from scanner drift, caused by factors like component 

heating. While physiological factors such as respiratory and cardiac cycles can contribute to slow 

changes in signal intensity. For instance, subtle variations in the breathing cycle or cardiac rhythm can 

induce gradual fluctuations in the recorded signal, mimicking a slow trend. 

       On the other hand, another component of the time series exhibits fast, high-frequency signal 

movements. These variations are more challenging to characterize because of the limited sampling rate 

used in fMRI data acquisition. While such movements usually arise from physiological processes like 

breathing and cardiac activity, they can also be the result of scanner-related artifacts. 

       Note that our signals of interest are contained within these high and low-frequency signals. So, we 

can’t ‘just remove’ all of them. In that case, we would lose a great amount of information.  

       There are generally two ways to approach this (depending on our study): High Pass and Low Pass. 

Now, I will discuss these 2 filtering methods: 
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Temporal Filtering: High Pass 

       In high pass filtering, we only remove low-frequency signals and we pass from the high 

frequencies. In the following graphs, we can see how high pass filtering works. The filtered signal now 

no longer shows any signs of the increasing, linear-shaped, trend. Instead, all we have left is the up and 

down high-frequency trend. Which was most likely caused by the breathing and cardiac activity. 

 

       When we do this type of filtering, it is important to specify a cutoff frequency that is appropriate 

for the type of design that we need. The cutoff frequency is the parameter that determines the boundary 

between retained and attenuated frequency components. If we use a cutoff frequency that is smaller 

than the frequencies of our signals of interest, the algorithm would by mistake remove the neuronal 

activity signals we were interested in. 

       In fMRI, the cutoff frequency is usually derived from the experimental design and the expected 

frequency of neuronal responses to stimuli. You might also calculate a suitable cutoff frequency by 

analyzing the predicted responses obtained by convolving stimulus timing with the hemodynamic 

response function (HRF). 

       Although, the preprocessing software you use should be able to calculate and suggest a suitable 

cutoff. That cutoff usually works well enough if you don’t have any other cutoff value in mind. 

Temporal Filtering: Low Pass 

       This step is similar to the previous step, but the opposite. We keep removing the high-frequency 

noise, while we keep the low-frequency signals. 

Similar to the previous filtering method, we need to be careful about our cutoff frequency. 
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       This method is not usually recommended. low pass filtering could only be used if we know that 

our predicted model does not contain low frequencies. 

▶ There is a third type of temporal filtering approach called bandpass that combines the above 

methods and removes both low and high-frequency noise. But this is not recommended because we 

might lose a large number of signals. Many of which might have been from the neural activities of our 

interest. (This is especially true for the more uniform-looking signals. The example above is complex 

and easy to classify. But not all signals are like this. When our signals are more uniform, using low 

pass or band pass causes many useful signals to be removed by mistake.) 

▶ Another problem with using low pass or band pass is that removing too much noise would cause 

problems in the validation of your statistical analysis. Because calculating the correct autocorrelation 

would be hard in such a situation. 

So, it is suggested to only use high pass. Just make sure: 

• Ensure the cutoff frequency is higher than model frequencies 

• Also put a lower limit on the cutoff frequency for good autocorrelation estimation (e.g. for 

TR=3s, cutoff period > 90s) 

7. Smoothing 

       It is common to smooth the functional data or replace the signal at each voxel with a weighted 

average of that voxel’s neighbors. This may seem weird when you first hear it. After all, why would we 

want to make the images blurrier than they already are? 

       Smoothing indeed decreases the spatial resolution of your fMRI, which is a disadvantage. But 

there are benefits to smoothing that sometimes outweigh its drawbacks. For example, we know that 



44 
 

fMRI data contains a lot of noise and that the noise is frequently greater than the signal. By averaging 

over nearby voxels, we can cancel out the noise and enhance the signal. 

       Another advantage of smoothing is when we are dealing with statistical analysis. To summarize, 

during group analyses in which all of the subjects’ images have been normalized to a template, a 

decrease in noise could be beneficial. Because, although each subject’s fMRI image will be 

transformed to match the general shape and large anatomical features of the template, there will be 

variations in how smaller anatomical regions align among the normalized functional images. If the 

images are smoothed, there will be more overlap between clusters of signals, and therefore greater 

likelihood of detecting a significant effect. 

▶ Remember from the registration section that normalization is just doing registration when we want 

to map our images into a standard space such as MNI 152. 

8. Global Intensity Normalization 

       One last problem of fMRI data that needs to be dealt with it’s the fact that fMRI data lacks 

quantitative consistency, resulting in varying mean levels across subjects. The mean signal level per 

subject holds no essential relevance to the stimulus we are working on. Global intensity normalization 

aims to ensure consistency across subjects while preserving data structure. The following image shows 

an example: 

 

       To summarize, if two patients show identical neural signals from their brains at some time point, 

the fMRI might not assign both of these signals the exact same value. This problem needs to be solved 

and we need to create a quantitative consistency between different subjects. This is why we use Global 

Intensity Normalization as our last preprocessing step (Note that we can NOT use this step earlier than 

other fMRI preprocessing steps are done. Because to generate a quantitative consistency between 
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different images, we need to compare the pure neural signals of interest. Thus, all other artefacts 

should already be removed. And our images better all be in the same standard space). 

The way this step gets done is pretty straightforward:  

• First, we determine (calculate) a mean level across all voxels and time points for each subject. 

• Then, we use the calculated mean levels to calculate the mean and variance.  

• At the end, we scale each fMRI image based on those values. Ensuring that the mean level 

across all spatial and temporal dimensions has become uniform. 

This process ensures that the mean value for each subject's dataset is consistent across the study group. 

Like the below example: 

 

9. Summary 

A short summary: 

• Reconstruction: Create an image and remove gross artefacts 

• Motion Artefact Correction: Get consistent anatomical coordinates (always do this step) 

• Slice Timing: Get consistent acquisition timing (use temporal derivative if possible)  

• Spatial Filtering: Improve SNR & validate GRF 

• Temporal Filtering: Highpass: Remove slow drifts  |  Lowpass: Avoid it if possible 

• Global Intensity Normalization: use it on all 4 dimensions. It keeps overall signal mean 

constant across different images 
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Preprocessing: Resting-State fMRI 

       Until now, we covered some of the main techniques used in the preprocessing of MRI and general 

fMRI data. But from here on, we take the fact into account that fMRI data itself is categorized into 2 

main groups: 

1. Task-Based fMRI 

       Task-based fMRI is one of the most common approaches in functional neuroimaging. In this 

method, participants are asked to perform specific cognitive or motor tasks while their brain activity is 

being measured. The tasks are designed to engage particular brain regions or networks associated with 

the function being studied. For example, a language task might involve reading or listening to words to 

activate regions involved in language processing. 

       The core principle of task-based fMRI is the cerebral blood flow and blood oxygenation level-

dependent (BOLD) response to neural activity. When a specific brain region is more active, it 

consumes more oxygen. The body responds by increasing blood flow to that region, which changes the 

magnetic properties of the blood. fMRI detects these changes, allowing researchers to infer which parts 

of the brain are involved in the tasks.   

       This approach is powerful for understanding the brain's functional organization, identifying which 

areas are involved in different cognitive processes, and how these areas interact during task 

performance. It's particularly useful in clinical research for understanding how diseases or injuries 

affect brain function and in cognitive neuroscience for mapping brain activity related to specific tasks. 

2. Resting-State fMRI 

       Resting-state fMRI, on the other hand, does not involve any explicit task. Instead, participants are 

usually asked to lie still, often with their eyes closed or fixed on a point, and let their minds wander 

without focusing on anything in particular. This method investigates the brain's activity when it is at 

rest, not engaged in any focused mental activity. 

       Despite the lack of a task, the brain is never truly "inactive." Even in a restful state, various brain 

regions continue to communicate and coordinate, reflected in spontaneous fluctuations in the BOLD 

signal. By analyzing these fluctuations, researchers can identify networks of regions that consistently 

show synchronized activity, known as resting-state networks. These networks are thought to reflect the 
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brain's intrinsic functional architecture, providing insight into how different regions of the brain are 

connected and cooperate, even in the absence of external tasks. 

       One of the key advantages of resting-state fMRI is that it can be used with individuals who might 

not be able to perform specific tasks, such as infants, young children, or patients with severe 

neurological disorders. It also avoids the complexities related to task design and allows for the 

examination of the brain's default network, which is active during rest and implicated in self-referential 

thought and mind-wandering.  

       Now, we will cover some of the more rs-fMRI-specific data processing methods. Note that, similar 

to other sections, you don’t need to use all these methods. Just selecting some of them (preferably over 

3) and using them would work well enough. 

1. Single subject ICA 

       Single-subject Independent Component Analysis (ICA) is a computational method applied to 

fMRI data to uncover underlying hidden factors or components that are statistically independent from 

each other. At its core, ICA is predicated on the assumption that the observed fMRI signals are linear 

mixtures of various independent sources, and the goal is to segregate these sources to extract 

meaningful patterns of brain activity and artifacts. 

       In the context of single-subject fMRI data, ICA is performed on the preprocessed time-series data 

obtained from the MRI scans of an individual. The high-dimensional fMRI dataset, typically consisting 

of voxel-wise time-series, is complex and multifaceted, with signals arising from both neural and non-

neural origins. ICA approaches this dataset without any prior knowledge or assumptions regarding the 

source or number of signals, aiming to decompose it into a set of spatially independent patterns (spatial 

maps) and their associated time courses. 

       Technically, ICA starts by creating a matrix where each row represents a voxel’s time series and 

each column corresponds to a time point in the scan. The number of independent components to be 

estimated is a crucial parameter and can be determined using heuristic algorithms that consider the 

data's complexity or may be set a priori based on the researcher's discretion. 

       ICA then seeks to factorize the original signal matrix into two matrices: one representing the 

independent components (the spatial maps), and the other the weighting (time courses) of these 
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components across the time series. This factorization is not trivial due to the inherent ambiguity in the 

solution—there are potentially infinite ways to decompose the signals into independent components. 

ICA circumvents this issue by relying on the statistical independence of the time courses of the 

components and often uses higher-order statistics (beyond variance and covariance) to enforce this 

independence. 

       The algorithms used to perform ICA, such as FastICA or Infomax, typically involve iterative 

processes that maximize the statistical independence of the output components. They employ measures 

such as negentropy or mutual information and adjust the weights iteratively until the outputs—the 

independent components—achieve maximal statistical independence from each other. This 

independence is often measured in terms of non-Gaussianity, as per the central limit theorem, the sum 

of independent non-Gaussian variables tends to be more Gaussian than the original variables 

themselves. 

       Once ICA converges, the resulting components each contain a spatial map, indicating the voxel-

wise contribution to that component, and a time course, representing the temporal characteristics of the 

component's contribution to the overall signal. The spatial maps can reveal distributed networks within 

the brain, corresponding to regions that share functional connectivity. The time courses reflect the 

activation patterns of these networks over the course of the scan. 

       The components identified can represent meaningful neural activity, such as those corresponding 

to known brain networks like the default mode or motor networks, but can also represent noise. Noise 

components might be due to head motion, cardiac and respiratory cycles, scanner artifacts, or other 

physiological processes not related to the neuronal activity of interest. 

       The ability of single-subject ICA to disentangle these sources is particularly powerful for resting-

state fMRI data, where the lack of an experimental design makes it challenging to separate the brain's 

intrinsic activity from noise. The end goal of ICA in this setting is to enhance the interpretability of the 

fMRI data by isolating and subsequently removing the components attributable to artifacts, thereby 

refining the analysis of neural connectivity and function. 

Here we have a sample result of ICA diagnosing: 
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       This visualization is organized into columns representing different components extracted from the 

data, with each component followed by its spatial map (the colorful brains!) and time series, and by the 

red cross or green check in the end we can see whether the component is considered noise (cross) or 

signal (check). 

       Spatial Maps: These maps show the spatial distribution of brain areas that are involved in each 

component. The color scale typically signifies the intensity or weight of the component at each voxel, 

with warmer colors often indicating stronger involvement in the component. For example, components 

that are spatially confined to gray matter regions are likely to represent neural activity, while those that 

show artifacts around the edge of the brain or ventricles are often considered noise. 

       Time Series: To the right of each spatial map we can see the time series plot for the respective 

component. These plots show us the fluctuation of the component's signal over the time course of the 

fMRI scan. A time series characterized by low-frequency and smooth oscillations show actual neuronal 

activity. In contrast, erratic, spike-laden, or high-frequency patterns are suggestive of noise, such as 

motion or physiological artifacts. 

       In the end, we can see the classification of each component as noise or signal. This classification is 

essential for denoising the data, as noise components are to be regressed out or otherwise removed 

from the dataset to enhance the clarity and interpretability of the fMRI data for subsequent analysis. 

2. Seed-based correlation analysis 

       Seed-based correlation analysis is a commonly used method in rsfMRI studies to evaluate 

functional connectivity. This technique involves selecting a region of interest within the brain, often 



50 
 

referred to as the "seed," and then assessing the degree of synchrony or correlation between the seed's 

activity and the activity throughout the rest of the brain. The main outline of this method is as follows: 

       Selection of the Seed Region: First, we choose a specific brain area based on our research question 

or hypothesis. The choice of this region is critical, as it will affect the connectivity pattern that emerges 

from the analysis. This seed could be a region known to be involved in a particular function or a hub 

within a known network. 

       Extraction of Time Series Data: Then, the average fMRI signal within the seed region is extracted, 

compiling a time series that represents the neural activity in that area over the course of the scan. 

       The extracted time series is then correlated with the time series from every other voxel in the 

brain. This is done to establish a correlation map that represents the functional connectivity of the seed 

region to all other regions. 

       The resulting map displays a value for each voxel indicating the strength of its correlation with the 

seed. Positive values indicate a positive correlation, meaning that as the seed region's activity increases 

or decreases, so does the activity in that voxel. Negative values, conversely, indicate an inverse 

relationship. 

 

       It should be noted that one of the challenges of seed-based analysis is the potential for bias based 

on the seed location. Small variations in seed placement can lead to significantly different connectivity 

patterns. In addition, although seed-based correlation analysis is straightforward and intuitive, it 

simplifies the brain's complex organization and does not account for the influence of other networks, 

potentially conflating different sources of connectivity into a single map. 

       Because of this, although this method is suitable for hypotheses that are centered on the function 

or pathology related to specific brain regions but may not be the best fit for exploratory analyses where 

the global network organization is the focus. 
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3. Group-ICA networks 

       Group-level Independent Component Analysis (Group-ICA) is an advanced neuroimaging method 

employed to explore shared neural patterns across multiple subjects within fMRI datasets. When 

applied to resting-state fMRI, Group-ICA is particularly potent, as it uncovers key brain networks that 

are consistent across a population, providing insights into the common functional architecture of the 

human brain. 

       The central premise of Group-ICA is that while each individual’s brain activity is unique, there are 

patterns of activity or networks that are universally present. These could be networks involved in basic 

functions such as sensory processing or higher-order functions like attention or memory. Group-ICA 

tries to identify these underlying common networks by analyzing data across a group rather than on an 

individual basis. 

       To get a little technical, Group-ICA involves concatenating preprocessed fMRI data from all 

subjects into a single large dataset, where the temporal dimension now includes the combined scans of 

all subjects. This merged dataset is then subjected to ICA, which assumes that the recorded signals – 

now a combination of signals from different brains – are mixtures of statistically independent sources. 

The ICA algorithm works to reverse this mixing, aiming to return the separate source signals. The end 

result is a set of spatial maps and associated time courses that represent the group-derived components. 

These components reflect the consistent patterns of brain activity or networks shared across the study 

population. 

 

       A key aspect of Group-ICA is the reliance on the statistical independence of the derived 

components, which means that each component's time series should not be able to predict another's. 

These independent components often reveal resting-state networks (RSNs), which are sets of brain 
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regions that exhibit synchronized activity when the brain is not engaged in any directed, externally 

focused task. RSNs discovered via Group-ICA, such as the Default Mode Network, are considered 

fundamental to understanding the brain's functional organization. 

       

       Note that we an important step following Group-ICA is the interpretation and validation of the 

identified components. Not all components correspond to neural networks; some may represent noise 

or artifact. Thus, we must manually examine the components to discern which are signal and which are 

noise. This classification can be conducted through visual inspection, relying on the neurobiological 

plausibility of the spatial maps, the consistency of the time courses, and the component’s frequency 

spectrum. 

       After identifying RSNs through Group-ICA, researchers typically employ dual regression or 

similar techniques to map these group-level networks back to individual subjects. This step allows for 

the examination of inter-individual variability within the identified networks and the investigation of 

relationships between network expression and behavioral or genetic variables. 

       In the end, note that Group-ICA’s power lies in its ability to leverage the multidimensional nature 

of fMRI data across subjects to explain the shared neural dynamics. However, the method requires 

careful consideration of numerous factors, including the selection of the number of components, the 

handling of signal vs. noise classification, and the implications of the findings for understanding brain 

function and its variations across different conditions or populations. 

4. Dual regression group analysis 

       Dual regression is a two-stage regression process used in fMRI to identify subject-specific spatial 

maps of resting-state networks (RSNs) that are consistent across a group of individuals. The technique 



53 
 

is generally applied following group-level Independent Component Analysis (Group-ICA), which 

identifies common patterns of brain activity across a group of subjects. Dual regression allows for the 

examination of these group-level patterns within individual subjects, allowing comparisons and 

statistical analyses across individuals or groups. 

       The first stage of dual regression involves spatial regression, which takes the group-level spatial 

maps obtained from Group-ICA and uses them as spatial regressors in a general linear model (GLM) 

applied to each subject's individual 4D fMRI data. This step essentially asks where in each individual's 

brain data can we find patterns of activity that look like the group-level patterns. The outcome of this 

spatial regression is a set of subject-specific time series, one for each group-level spatial map, 

reflecting how the activity in each network evolves over time for that individual. 

       Once the time courses have been extracted for each individual, the second stage of dual regression 

comes into play. Here, temporal regression is applied: the subject-specific time series obtained from 

the first stage are used as temporal regressors in another GLM, now applied to the same individual's 

4D fMRI data. This step essentially maps out where each subject-specific time course is expressed 

across the brain. This results in a set of subject-specific spatial maps corresponding to each of the 

group-level RSNs. These maps show where in the brain the fluctuations of each time course are found, 

allowing researchers to quantify the expression or connectivity of each network within individuals. 

 

       One of the key strengths of dual regression is its ability to retain the individual-specific details of 

brain activity while also allowing for group-level inferences. It can provide insights into individual 

differences in brain network architecture and how these relate to behavior, genetics, or disease state. 
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For example, dual regression has been widely used in clinical research to understand how brain 

network connectivity differs between patients with neurological or psychiatric conditions and healthy 

controls. 

       Despite its utility, dual regression does have limitations. The accuracy of the individual spatial 

maps generated in the second stage of dual regression is contingent on the quality of the group-level 

components identified by Group-ICA. Moreover, the method assumes that the Group-ICA components 

are largely similar across individuals, which may not always be the case. There can be subtle but 

important differences in how RSNs are represented across different people, and dual regression may 

not capture this variability fully. Care must be taken when interpreting the results, and the technique is 

often complemented with other analyses to confirm findings. 

5. Node parcellations (this method has much more detail than I -badly- summarized here. For a 

more comprehensive review, check out this tutorial) 

       Network Modeling Analysis in the context of brain imaging is a computational framework 

designed to understand the complex interconnections within the brain, often referred to as the brain's 

"connectome." This framework encompasses several stages, with Node Definition and Edge 

Calculation being important in the construction and analysis of brain networks. 

       Node Definition is the process of determining the regions of interest within the brain that will 

serve as the primary units or nodes in the network model. These nodes are typically chosen to represent 

specific brain regions or clusters of voxels with a functional or anatomical basis. The granularity of 

these nodes can vary greatly depending on the scale of the analysis and the resolution of the data. 

Nodes could represent individual brain regions defined by anatomical atlases, or they could be 

functionally defined regions that are identified based on their activity patterns during the task or resting 

states. 

       The selection and definition of nodes are critical because they set the stage for all subsequent 

analyses. Nodes must be defined so that they are meaningful in the context of the research question and 

consistent with the spatial resolution of the imaging modality used. There are several methods for 

defining nodes, ranging from using predefined anatomical or functional regions to employing data-

driven approaches such as clustering or Independent Component Analysis (ICA) that define nodes 

based on the patterns found in the data itself. 

https://www.youtube.com/watch?v=VrhxqOs6wzQ&t=4s
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       Edge Calculation is the next step and refers to the quantification of the relationships or 

connections between pairs of nodes, which are termed "edges" in network analysis. The primary 

method for calculating edges in functional neuroimaging is to compute the statistical association 

between the time series of brain activity from two nodes. Pearson correlation coefficients are 

commonly used to measure the linear relationship between two nodes' activity, where the strength of 

correlation is taken as a proxy for the strength of connectivity. 

       Edges can represent various types of connections, including anatomical connections (physical 

white matter tracts measured through diffusion MRI), functional connections (synchronous activity 

measured through fMRI), and effective connections (the influence one region exerts over another). 

While the Pearson correlation can provide a measure of functional connectivity, it does not infer 

directionality or causality. For understanding causal relationships or influence, methods such as 

Granger causality or dynamic causal modeling might be employed, although these approaches have 

limitations and are subject to certain assumptions that may not always hold true for fMRI data. 

       Partial correlation and network-based statistics can be used to remove indirect connections and 

emphasize direct connections between nodes, but these methods require careful application. They 

involve controlling for the activity of all other nodes in the network when calculating the edge strength 

between two nodes, which can sometimes lead to false negatives or false positives if not implemented 

with consideration for the network's complexity and the quality of the data. 

       The result of Node Definition and Edge Calculation is a graph or a matrix that represents the 

brain's network, with nodes as the graph's vertices and edges as the lines that connect them. The 

characteristics of this graph, such as its density, modularity, and the centrality of its nodes, can provide 

helpful information to us about the brain's functional architecture. Network Modeling Analysis can 

reveal how brain regions coordinate activity, how this coordination may be disrupted in disease, and 

how it might be modulated by various cognitive or behavioral states. 

       To summarize, Network Modeling Analysis is a comprehensive approach that translates complex 

brain imaging data into a structured representation of brain connectivity. This representation can then 

be used to check and understand the functional organization of the brain, both in health and disease. 
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6. Subject and Group Network Modelling Analysis (if you are interested, more details can be 

found here) 

       Network modeling analysis in the context of neuroimaging is an approach used to understand and 

quantify the complex web of interactions between different regions of the brain. In the application of 

this approach, especially in rsfMRI, the primary goal is to map and analyze the functional connectivity 

networks that underpin various cognitive processes and brain states. In the following, I will describe 

some of the key steps in this approach: 

       In network modeling analysis, especially when dealing with fMRI data, the process depends 

heavily on how we define nodes and calculate edges within a brain network. Nodes are essentially 

points in the network that represent specific brain regions or groups of neurons, and edges are the 

connections between these nodes, indicating some form of relationship or interaction.  

       Defining nodes can be done in various ways, but it often involves segmenting the brain into 

distinct areas based on either anatomical landmarks or functional characteristics. For instance, we 

might use an anatomical atlas to divide the brain into predefined regions like the prefrontal cortex or 

hippocampus, assigning each region as a node. Alternatively, functional criteria might group voxels 

showing similar activity patterns during certain tasks or resting states, using clustering algorithms or 

Independent Component Analysis (ICA) to identify functionally coherent regions. The choice of node 

definition method can significantly impact the network's subsequent analysis and interpretation, 

making it a critical step in the process. 

       Once nodes are established, the next step is to determine the edges, which quantify the relationship 

or interaction between each pair of nodes. In functional connectivity studies, this often involves 

calculating the statistical correlation between the time series of brain activity in each pair of nodes. A 

high correlation suggests that the two regions are functionally connected, possibly part of the same 

network. However, simply using correlation can be misleading because it doesn't distinguish direct 

from indirect connections. For a more nuanced view, techniques like partial correlation or graphical 

lasso might be used to eliminate spurious connections and highlight more meaningful relationships. 

       A significant challenge in group analysis is ensuring consistency in node definitions across 

individuals, whose brain anatomy and functional organization can vary. One common approach is to 

normalize individual brain data to a standard template before analysis, but this can sometimes warp 

https://www.youtube.com/watch?v=1vzFk6Napjw
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individual-specific features. Another challenge is dealing with the inherently indirect and noisy nature 

of fMRI data, where non-neural factors like participant movement or physiological processes can 

contaminate the signal. Preprocessing steps, including motion correction and spatial smoothing, are 

crucial for minimizing these effects, but they must be carefully calibrated to avoid introducing new 

artifacts or losing relevant information. 

       All in all, note that network modeling analysis in neuroimaging is a technically demanding process 

that requires careful attention to how nodes are defined and how connections between them are 

quantified. The choices made at each step can significantly impact the results, making it essential to 

understand the underlying principles and potential pitfalls of different methods. 

7. Nuisance Regression 

       Nuisance regression is a crucial preprocessing step in resting-state fMRI data analysis, aimed at 

removing unwanted variance from the data that is not related to neural activity of interest. This process 

is essential because resting-state fMRI does not rely on a task-based model to explain expected brain 

activity. Instead, it examines the natural similarities in the time courses of different brain regions' 

signals. Such analyses are particularly sensitive to various sources of noise, such as head motion, 

physiological processes (like cardiac and respiratory cycles), and scanner artifacts. 

       In resting-state fMRI, the absence of a task means that any movement or physiological process can 

easily introduce similarities between the time courses of different brain regions, potentially 

confounding true neural connectivity signals. For instance, head motion can cause widespread, 

synchronous signal changes across the brain, mimicking functional connectivity. This is especially 

concerning in studies comparing different populations, such as patients and controls, where motion-

related differences might be mistaken for genuine neural differences. 

       Nuisance regression involves identifying and removing signals in the data that can be attributed to 

non-neural sources. For this purpose, similar to ant regression model, we first need to decide on 

suitable regressors. Some such regressors include: 

• Head Motion Parameters: Movement-related artifacts are a major source of spurious variance 

in fMRI data. Six parameters representing rigid-body head motion (three translations and three 

rotations) are typically included as regressors in the nuisance regression model. 
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• Physiological Signals: Fluctuations related to cardiac and respiratory cycles can also introduce 

noise into the fMRI signal. Signals representing these physiological processes, often derived 

from external measurements, can be included as nuisance regressors. 

• Signals from Non-Neural Tissues: Averages of the fMRI signal from white matter and 

cerebrospinal fluid (CSF) are often used as nuisance regressors, under the assumption that these 

areas are less likely to be involved in task-related neural activity and more likely to contain 

noise signals 

       Nuisance regression is used by leveraging the Generalized Linear Models (GLMs), a statistical 

method widely used in fMRI data analysis. The GLM is applied to each voxel's time series data to 

model the nuisance signals and separate them from the neural signals of interest. In this context, the 

model includes: 

• Data Time Series: The observed fMRI signal for a given voxel, represented in the model by 

the time series data (in red in the below plot). 

• Nuisance Regressors: Time series data for each identified source of nuisance variance (e.g., 

head motion parameters, physiological signals), included in the model as regressors (in blue in 

the figure). 

 

• Also, the black line in the right side is the residual data after the contribution of the nuisance 

variables has been accounted for. Ideally, this should represent 'cleaner' data from which one 

can derive more accurate interpretations of brain activity, with the influences of head motion 

and non-neuronal physiological changes minimized. 
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• The GLM estimates coefficients (beta values) for each nuisance regressor that best fits the 

observed data, effectively modeling how much of the observed signal can be explained by these 

nuisance sources. The residuals of this model, representing the portion of the data not explained 

by the nuisance regressors, are then considered the cleaned data, purged of the identified 

nuisance variance. 

       It could be said that Nuisance regression is a critical step in cleaning resting-state fMRI data, 

ensuring that subsequent analyses, such as functional connectivity studies, are less likely to be 

confounded by non-neural sources of variance. By carefully removing these sources of noise, 

researchers can more confidently attribute observed connectivity patterns to genuine neural processes, 

enhancing the validity of resting-state fMRI studies. 

8. Volume Censoring 

       Volume centering, also referred to as scrubbing, spike regression, or despiking, is a method used in 

the preprocessing of fMRI data, particularly effective for addressing the issue of head motion. This 

approach is based on the principle of identifying and excluding data volumes (or time points) that 

exhibit excessive motion, beyond a predefined threshold, to mitigate the impact of large motion 

artifacts on the analysis. 

• Motion Estimation: The first step involves estimating the head motion for each volume (or 

time point) within the fMRI data set. This is typically done using motion parameters obtained 

from the motion correction step, which provides six parameters per volume representing three 

translations and three rotations of the head. 

• Framewise Displacement: A common metric used in this context is framewise displacement, 

which provides a scalar value representing the amount of motion between consecutive volumes. 

It combines the translational and rotational parameters into a single measure, allowing for a 

straightforward assessment of motion at each time point. 

• Thresholding: Once the motion for each volume is quantified, a threshold is set to determine 

what constitutes "excessive" motion. Volumes with framewise displacement values exceeding 

this threshold are flagged for exclusion. The choice of threshold is somewhat arbitrary and may 

vary between studies, but it is typically set based on empirical observations or the specific 

requirements of the analysis. 
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• Exclusion of High-Motion Volumes: The flagged volumes are then either removed from the 

data set or otherwise accounted for in a way that minimizes their impact on the analysis. This 

might involve excluding these time points from the analysis altogether or using interpolation to 

estimate the signal based on neighboring volumes. 

• Effectiveness: Volume centering is particularly effective in reducing the impact of large head 

motions, which can introduce spurious correlations in functional connectivity analyses. By 

removing or mitigating these artifacts, the method helps in preserving the integrity of the neural 

signal of interest. 

• Side Effects: The exclusion of volumes leads to variability in the number of time points 

available across different subjects or sessions. This variability poses challenges for group-level 

analyses and necessitates careful consideration in the study design and data interpretation. 

       Volume centering is a critical tool in the presence of significant head motion. Its application can 

significantly enhance the quality of the data, although researchers must be mindful of its limitations 

and the potential impact on subsequent analyses. (the amount of data that is removed in volume 

censoring is often relatively high (between 20% and 60% of all volumes.) Also, there is a large 

reduction in the temporal degrees of freedom of the data. The implication of this reduction in degrees 

of freedom is that the statistical power is reduced. This means that the estimate of functional 

connectivity becomes more noisy when it is calculated using fewer volumes 

9. ICA-Based Clean-up 

       ICA-based cleanup in resting-state fMRI data preprocessing is a technique aimed at identifying 

and removing components of the data that represent noise rather than neural activity. ICA, or 

Independent Component Analysis, is a computational method used to separate a multivariate signal 

into additive, independent non-Gaussian signals or components. In the context of fMRI data, these 

components can represent various sources of signal, including both neural activity and various forms 

of noise such as head motion, physiological fluctuations, and scanner artifacts. 

• Component Decomposition: The first step in ICA-based cleanup is to decompose the fMRI 

data for each subject into a set of spatial maps and associated time courses using ICA. This 

decomposition essentially attempts to break down the complex, intertwined signals in the fMRI 
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data into simpler, independent components that can be more easily categorized as signal or 

noise. 

• Component Classification: Once the ICA decomposition is complete, the resulting 

components need to be classified as either representing neural activity (signal) or various 

sources of noise. This classification can be done through several approaches: 

• Manual Classification: In this step, we visually inspect the spatial and temporal features of 

each component, along with its frequency spectrum, to determine whether it more likely 

represents noise or neural signal. This process can be guided by known characteristics of noise 

components (e.g., spatially focal artifacts, high-frequency content) versus neural components 

(e.g., distributed networks, low-frequency fluctuations). 

• Automated or Semi-Automated Methods: Techniques like FIX (FMRIB's ICA-based X-

noiseifier) or ICA-AROMA (ICA-based Automatic Removal Of Motion Artifacts) use 

predefined criteria and machine learning algorithms to classify components automatically, 

reducing the need for manual intervention and subjective judgment. 

• Removal of Noise Components: After classification, components identified as noise are 

removed from the data. This is typically done using a regression approach, where the time 

courses of the noise components are treated as nuisance regressors in a GLM model, and their 

influence is regressed out from the original data. The residuals from this model represent the 

cleaned data, with the effects of the identified noise components removed. 

       After these steps, ICA-based cleanup can effectively identify and remove a wide range of noise 

sources, including those that might be overlooked or inadequately addressed by other methods. By 

isolating and removing only the components classified as noise, ICA-based cleanup preserves the 

integrity of the neural signal in the data, which is crucial for accurate functional connectivity analysis. 

However, it should be noted that the manual classification of components requires expertise and can 

introduce subjectivity into the preprocessing pipeline. Automated methods help with this but might not 

be perfect for all datasets. In addition, ICA decomposition can be computationally intensive, especially 

for high-resolution or long-duration fMRI datasets. 
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10. Physiological Noise Regression 

       Physiological Noise Regression (PNR) in fMRI is a preprocessing step that aims to isolate and 

remove variations in the fMRI signal that arise from physiological processes, primarily cardiac 

(heartbeats) and respiratory (breathing) cycles. These physiological processes introduce fluctuations in 

the fMRI data that can be mistaken for neuronal activity, thereby confounding the interpretation of the 

results. The goal of PNR is to enhance the accuracy of fMRI analyses by ensuring that the observed 

signal changes are more representative of brain activity rather than artifacts of bodily functions. 

       The process begins with the concurrent collection of physiological data alongside the fMRI scans. 

Specialized equipment such as a pulse oximeter for monitoring the heart rate and a respiratory belt for 

tracking the breathing patterns is used. This additional data allows researchers to track the timing and 

intensity of each heartbeat and breath during the scanning session. 

       To deal with the effects of these physiological factors, the recorded cardiac and respiratory data are 

converted into regressors. Regressors are time series that model the expected influence of heartbeats 

and breathing on the fMRI signal. For cardiac effects, the timing of each heartbeat is used to generate 

regressors that reflect the pulsatile changes in blood flow and oxygenation with each cardiac cycle. 

Similarly, for respiratory effects, the cycle of inhalation and exhalation is modeled to account for the 

changes in thoracic pressure, blood CO2 levels, and subsequently, cerebral blood flow that affect the 

fMRI signal. 

       The complexity of the physiological influences necessitates sophisticated modeling to accurately 

capture their effects. One common approach is to use a Fourier series to decompose the physiological 

signals into a sum of sine and cosine waves at various frequencies, corresponding to the heart and 

respiratory rates. This helps in modeling the periodic nature of these artifacts more comprehensively. 

       Tools like RETROICOR (RETROspective Image CORrection) employ these Fourier-transformed 

physiological regressors to predict and correct for the cyclic variations in the fMRI signal attributed to 

cardiac and respiratory cycles. The method assumes that these physiological noises can be represented 

as a combination of several harmonics of the fundamental frequencies of heart and respiratory rates. 

       The actual correction is implemented through the General Linear Model (GLM), where the fMRI 

data is regressed against the physiological regressors. The GLM fitting process estimates the 

contribution of each physiological regressor to the observed fMRI signal at each voxel, and these 
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contributions are then subtracted from the original data. The residuals from this regression, which 

represent the cleaned fMRI signal, are presumed to be purged of the physiological noise and thus more 

reflective of true neuronal activity. 

       Despite its efficacy, PNR is not without challenges. It should be noted that the variability in 

physiological processes across individuals means that the regression models need to be tailored to each 

dataset. Furthermore, there's a risk of over-correcting and inadvertently removing neural signals that 

might overlap in frequency with physiological noises. Therefore, careful implementation and 

validation of PNR are paramount to ensure the reliability of fMRI-based inferences on brain function. 

11. Global Signal Regression 

       Global Signal Regression (GSR) is a technique used in the preprocessing of fMRI data to mitigate 

global sources of noise and artifacts. The method involves the computation of the global signal, which 

is the average time series of the fMRI signal across the whole brain, or a large, representative portion 

of it. This global signal is presumed to contain components of systemic physiological noise, such as 

fluctuations related to respiration and cardiac cycles, as well as other global artifacts. 

       Once computed, the global signal is then regressed out from the time series of each voxel in the 

brain. This process involves using the global signal as a regressor in a linear model and removing its 

influence from the data, ideally leaving behind a cleaner signal that is more representative of localized 

neuronal activity. 

• Computation of Global Signal: The global signal is calculated as the mean time series across 

all voxels within the brain or a predefined brain mask. This calculation requires careful 

consideration to ensure that the mask or the selected voxels represent a broad and unbiased 

sampling of brain areas. 

• Regression Process: The global signal is included as a nuisance regressor in a General Linear 

Model (GLM) applied to the time series of each voxel. The model estimates the contribution of 

the global signal to each voxel's time series, and this contribution is subtracted out, yielding 

residuals that serve as the cleaned data. 

• Residual Analysis: After GSR, the resultant voxel time series (the residuals from the GLM) are 

used in subsequent analyses. These residuals are presumed to be less contaminated by global 
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physiological and other artifacts, potentially enhancing the specificity of functional 

connectivity analyses. 

• Alteration of Functional Connectivity Patterns: One of the main criticisms of GSR is its 

potential to alter intrinsic functional connectivity patterns. By removing the global signal, GSR 

can introduce negative correlations into the data and shift the overall distribution of correlation 

values, which could lead to misinterpretations of functional connectivity networks. 

• Physiological Noise vs. Neural Signals: The global signal is thought to contain a mix of 

physiological noise and neural signals that are globally synchronized. Removing this signal 

might also remove neural information of interest, particularly signals related to large-scale 

brain networks like the Default Mode Network. 

Note that the impact of GSR may vary across individuals and experimental conditions, making its 

effects difficult to predict and standardize across studies. 
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Suggested Available Automatic Tools: Brain Extraction  

https://www.sciencedirect.com/science/article/pii/S1053811904001557 

Suggested Available Automatic Tools: Segmentation 

https://journals.sagepub.com/doi/10.1177/0972753121990175 

 

https://www.sciencedirect.com/science/article/pii/S1053811904001557
https://journals.sagepub.com/doi/10.1177/0972753121990175
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