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Introduction



Motivation: Uncertainty-Based Deep Learning

Uncertainty-Based Models:
1. Provides confidence measures along with predictions.

2. Crucial in high-stakes applications (e.g., medical diagnosis, autonomous 
driving).

3. Separates epistemic (model-related), aleatoric (data-related), and predictive 
uncertainties.

4. Reduces risk of overconfident predictions.

5. Better handling of out-of-distribution data.





Bayesian Neural Networks



Deterministic Income Prediction



MC-Dropout Income Prediction



Uncertainty in Classification - CIFAR10



Paper’s Main Contributions

• Paper’s Motivation
• Deep learning tools are strong but they fail to capture uncertainty
• Bayesian models offer a computationally expensive but 

mathematically grounded framework to calculate model 
uncertainty

• The theory behind dropout
• Dropout training in NNs is a type of approximate Bayesian 

inference in GPs

• Using MC Dropout Approach, we can calculate uncertainty without 
sacrificing any computational power or train accuracy!





Dropout as a Bayesian Approximation

The paper shows that dropout is, in fact, just an approximation of variational 
inference in deep gaussian processes! 

Thus, dropout has the potential to provide all the advantages of VI and GPs to us!



Dropout

• In a basic NN with input weight matrix 𝑤1 (Q ∗ 𝐾), output weight 
matrix 𝑤2 (𝐾 ∗ 𝐷), and bias term 𝑏 (𝐾 dimension), the output is:

• In dropout we sample two binary vectors 𝑧1 (𝑄dimensions) and 𝑧2
(𝐾 dimensions) such that:

• And the output will be: 



Gaussian Processes (GPs)

• GPs are a powerful statistical tool that allows us to model 
distributions over functions in both supervised and unsupervised 
domains

• They provide:
• Uncertainty estimates over function values.

• Robustness to overfitting.

• Principled hyperparameter tuning.

• Could be used for large scaled data when cmbined with approximate 
variational inference



Gaussian Processes (GPs)

• The target is to find the function that generates our data:

• Using the Bayesian approach, we put a prior over the space of 
functions p(f)

• We then look for the posterior distribution over the space of 
functions given our dataset (X, Y):

• This distribution captures the most likely functions given our 
observed data.

• GPs work for both regression and classification tasks



Gaussian Processes (GPs)

• For regression tasks, the prior and the posterior are taken as:

• Where τ is the precision hyper-parameter and where 𝐼𝑁 is the identity 
matrix with dimensions N*N.

• K(X, X) is a N × N covariance matrix



Gaussian Processes (GPs)

• For classification tasks, the prior and the posterior are taken as:

• Here, the precision hyper-parameter is zero.

• Then, we use the output Y values and calculate a categorical 
distribution with softmax probabilities:



Variational Inference (VI)

• VI is a technique used to approximate complex probability distributions 
in Bayesian models.

• In VI, using basic probability theory rules, we want to find the following 
predictive distribution that predicts y* for a new input point x*:



Variational Inference (VI)

• The main challenge:
• The distribution p(ω|X, Y) cannot usually be evaluated analytically. Instead we 

define an approximating variational distribution q(ω)

• Now the training goal is to get q(ω) as close to p(ω|X, Y) as possible
by minimizing the KL-divergence:



Dropout as a Bayesian Approximation

• In a NN model, we minimize a basic E(., .) loss function. And if we add 
𝐿2 regularization on the top of it, we’ll get:

• Depending on the nature of the model, E(., .) could be euclidean loss 
or softmax loss.

• Here N is the number of training examples and L is the number of 
layers in our network.



Dropout as a Bayesian Approximation

• Now we define an approximation of a deep GP model using VI. And 
show that our minimization task is similar to ℒ𝐷𝑟𝑜𝑝𝑜𝑢𝑡.

• The covariance function K(x, y):

• Here, p(w) and p(b) are the distribution of the weight (w) and bias 
term (b).

• This covariance function could be approximated by VI.



Dropout as a Bayesian Approximation

• Now take 𝜔 = 𝑤𝑖 ⅈ=1
𝐿 (for i from 1 to L) with 𝑊𝑖 of dimension 𝐾𝑖 ∗

𝐾𝑖−1 and distributed according to p(w)

• The predictive probability of the deep GP model:

• And the output ො𝑦:

)



Dropout as a Bayesian Approximation

• As we observed before, the posterior p ȁ𝜔 𝑥, 𝑦  is our approximation 
target. Denoted by q 𝜔  and defined as:

• Given probabilities 𝑝𝑖 and matrices 𝑀𝑖  as variational parameters

• We randomly set the columns of 𝑀𝑖 to zero



Dropout as a Bayesian Approximation

• Finally, using KL divergence, we minimize:

• Target: getting q 𝜔  as close to p ȁ𝜔 𝑥, 𝑦  as possible

• Separating the Y and X vectors to a logarithm sum:



Dropout as a Bayesian Approximation

• Use Monte Carlo integration with a single sample ෝ𝜔𝑛~𝑞 𝜔  and 
simplify the result:

• Where 𝑙 is the prior length-scale and 𝜏 is the model precision

• Now we set:



Putting everything together

• We found the deep GP model using VI minimization target to be:

• And the loss of a NN model with dropout and 𝐿2 regularization is:

• All left is to take 𝜏 = 𝑝𝑙2/2𝑁𝜆 and we’ll see: dropout is just a Bayesian 
approximation!



Obtaining Model Uncertainty

1. First, train a basic deterministic NN model using dropout

2. Then, during the test time, save multiple 𝑦 predictions for each 
input 𝑥 using different (random) dropouts

3. Thus, we have a distribution of ȁ𝑦∗ 𝑥∗

4. Now we observe the approach to calculate the model’s uncertainty.



Obtaining Model Uncertainty

• Our approximate predictive distribution is given by

• Where ω = wⅈ ⅈ=1
L  is our set of random variables for a model with L 

layers

• Here, 𝑞 𝜔  captures the randomness introduced by dropout

• We are interested in the variance (uncertainty) of our prediction 𝑦∗



Obtaining Model Uncertainty

• After some not-so-simple calculation, we can calculate:

• The first moment of 𝑞 ȁ𝑦∗ 𝑥∗ :

• The second moment of 𝑞 ȁ𝑦∗ 𝑥∗ :



Obtaining Model Uncertainty

• Now, we easily obtain the model’s predictive variance (the model’s 
uncertainty for prediction):

• Remember from a few slides ago that 𝜏 = 𝑝𝑙2/2𝑁𝜆



Obtaining Model Uncertainty

• This 𝑉𝑎𝑟𝑞 ȁ𝑦∗ 𝑥∗ (𝑦∗) values represents the sample variance of T 
stochastic forward passes through the NN plus the inverse model 
precision (𝜏−1)

• For regression, we can also use the predictive log-likelihood:

• With a log-sum-exp of T terms and ො𝑦𝑡 stochastic forward passes 
through the network.



Obtaining Model Uncertainty

• The variance 𝑉𝑎𝑟𝑞 ȁ𝑦∗ 𝑥∗ 𝑦∗ :
• It provides an estimate of the uncertainty in the model’s predictions for a 

given input 𝑥∗.

• The predictive log-likelihood 𝑙𝑜𝑔 𝑝 ȁ𝑦∗ 𝑥∗, 𝑋, 𝑌 :
• It is used to assess how well the model predictions align with actual 

outcomes, taking into account the training data

• These provide just a glimpse into many properties of our predictive 
distribution 𝑞 ȁ𝑦∗ 𝑥∗



Results



Model Uncertainty in Regression Tasks



• Note that the uncertainty is increasing far from the data for the ReLU 
model, whereas for the TanH model it stays bounded

• This is because dropout’s uncertainty draws its properties from GP 
and we can prove that:
• ReLU and TanH approximate different GP covariance functions and TanH 

saturates whereas ReLU does not.

• TanH’s saturation means that for large positive or negative inputs, the 
function's output changes very little, effectively limiting the influence of any 
further increase or decrease in input.

Model Uncertainty in Regression Tasks



T is taken as 10 here to demonstrate low T effect on uncertainty

Model Uncertainty in Regression Tasks



Model Uncertainty in Classification Tasks

Here, they use MNIST dataset for demonstration



Predictive Performance



Model Uncertainty in Reinforcement Learning



• The log plot of average rewards shows that the Thompson sampling 
approach using the dropout model converges faster to higher rewards 
than the epsilon-greedy method.

• Thompson sampling achieved a higher reward threshold within just 
25 batches during the initial burn-in period, whereas epsilon-greedy 
required 175 batches to reach similar performance levels.

• However, it is noted that the performance of the Thompson sampling 
approach stops improving after 1k epochs.

Model Uncertainty in Reinforcement Learning



Relevant Extensions



Concrete Dropout (Gal et al., 2017)

• Dropout rate at each layer is learned as part of the optimization 
process

• Their approach allows automatic tuning and faster experimentation 
cycles in large models

• Achieved improved performance and better calibrated uncertainties

Different as the number 
of data points increases:



MC-DropConnect (Mobiny et al., 2021)

• They use the idea of DropConnect from an old 2013 ICML paper (Wan et al.)

• Instead of activations, they set random weights to zero (they put a Bernoulli 
distribution on model weights)

MC-DropConnect approximated BNN 
(shown in green) generally performs better 
than MC-Dropout (shown in red) for both 
MNIST (Top) and CIFAR-10 (Bottom) 
datasets:



Conclusion

• We interpret dropout in neural networks as approximate Bayesian 
inference within deep Gaussian processes.

• We demonstrated how dropout can be employed to extract and 
utilize uncertainty information from neural networks.

• MC dropout successfully surpassed the state of the art in +10 
datasets in 3 different tasks.
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